一、个人简介:
王友雨,男,教授,(硕士生导师),1987年参加工作,目前从事数学专业领域教学与研究,研究方向:应用微分方程。
二、教育背景:
2003年9月-- 2006年7月:北京理工大学,应用数学专业,博士学位;
1999年9月-- 2002年6月:河北大学,基础数学专业,硕士学位;
1983年9月--1987年7月:天津职业技术师范学院,数学专业,学士学位。
三、教学情况:
主讲课程:《应用微分方程》、《数学分析》、《偏微分方程》、《高等数学》、《微积分》、《线性代数》等。
四、科研情况:(代表性成果)
<科研立项>
1.2020年主持省部级项目《多点一维p-Laplace算子特征值及其在动力系统和分数阶微分方程边值问题中的应用》;
2.2008年主持局级项目《常微分方程边值问题解的适定性及相关方法》。
<发表论文>
1.Youyu Wang and Weigao Ge, Existence of periodic solutions for nonlinear differential equation with p-Laplacian-Like operator, Applied Mathematics Letters, 19(2006)241--259;
2.Youyu Wang and Chengmin Hou, Existence of multiple positive solutions for one dimensional p-Laplacian,Journal of Mathematical Analysis and Applications, 315(2006)144--153;
3.Youyu Wang and Weigao Ge, Positive solutions for multipoint boundary value problems with one dimensional p-Laplacian, Nonlinear Analysis, Theory, Methods & Applications, 66(6)(2007)1246-1256;
4.Youyu Wang, Wenxia Zhao and Weigao Ge, Multiple positive solutions for boundary value problems of second order delay differential equations with one-dimensional p-Laplacian, Journal of Mathematical Analysis and Applications, 326 (2007) 641–654;
5.Youyu Wang, Hairong Lian and Weigao Ge, Periodic Solutions for a Second Order Nonlinear Functional Differential Equation, Applied Mathematics Letters, 20 (2007) 110–115;
6.Youyu Wang and Weigao Ge, Periodic solutions for Duffing equations with a p-Laplacian-like operator, Computers and Mathematics with Applications, 52(6-7)(2006)1079-1088;
7.Youyu Wang and Weigao Ge, Multiple positive solutions for multipoint boundary value problems with one dimensional p-Laplacian, Journal of Mathematical Analysis and Applications, 327 (2007)1381–1395;
8.Youyu Wang and Weigao Ge, Existence of multiple positive solutions for multipoint boundary value problems with one dimensional p-Laplacian, Nonlinear Analysis, Theory, Methods &Applications, 67(2)(2007)476-485;
9.Youyu Wang and Weigao Ge, Existence of solutions for a third order differential equation with integral boundary conditions, Computers and Mathematics with Applications, 53(1)(2007)144-154;
10.Youyu Wang and Weigao Ge, Existence of triple positive solutions for multi-point boundary value problem with one dimensional p-Laplacian, Computers and Mathematics with Applications,54(6)(2007)793-807;
11.Youyu Wang, Chengmin Hou ,Weigao Ge and Chune Zhang, Existence of periodic solutions for second-order Duffing equations with p-Laplacian-like operators, Nonlinear Analysis, Theory, Methods &Applications, 71 (2009) 2431-2440;
12.Youyu Wang, Guofeng Liu, Yinping Hu, Existence and uniqueness of solutions for a second order differential equation with integral boundary conditions, Applied Mathematics and Computation, Volume 216, Issue 9, 1 July 2010, Pages 2718-2727;
13.Youyu Wang, Meng Zhao and Yinping Hu: Triple positive solutions for multi-point boundary value problem with one dimensional $p$-Laplacian, Computers & Mathematics with Applications, Volume 60, Issue 6, September 2010, Pages 1792-1802;
14.Youyu Wang, Lyapunov-type inequalities for certain higher order differential equations with anti-periodic boundary conditions,Applied Mathematics Letters, Volume 25, Issue 12, December 2012, Pages 2375-2380;
15.Youyu Wang, Wei Sun, Jing Yang, Some new Opial-type inequalities involving higher order derivatives, Annales Polonici Mathematici , 112 (2014), 185-193;
16.Youyu Wang, Shuilian Liang, Chenxue Xia, A Lyapunov-type inequality for a fractional differential equation under Sturm-Liouville boundary conditions, Mathematical Inequalities & Applications, 20 (2017), 139-148;
17.Youyu Wang, Qichao Wang, Lyapunov-type inequalities for nonlinear fractional differential equation with Hilfer fractional derivative under multi-point boundary conditions, Fractional Calculus and Applied Analysis, Volume 21, (2018) Issue 3, Pages 833–843。
<出版著作/教材>
1.《线性代数》,高等教育出版社,2013年。